Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Breathe (Sheff) ; 19(1): 230035, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-20234453

ABSTRACT

Accumulated evidence supports the efficacy of noninvasive respiratory support therapies in coronavirus disease 2019 (COVID-19)-related acute hypoxaemic respiratory failure, alleviating admissions to intensive care units. Noninvasive respiratory support strategies, including high-flow oxygen therapy, continuous positive airway pressure via mask or helmet and noninvasive ventilation, can be alternatives that may avoid the need for invasive ventilation. Alternating different noninvasive respiratory support therapies and introducing complementary interventions, like self-proning, may improve outcomes. Proper monitoring is warranted to ensure the efficacy of the techniques and to avoid complications while supporting transfer to the intensive care unit. This article reviews the latest evidence on noninvasive respiratory support therapies in COVID-19-related acute hypoxaemic respiratory failure.

2.
Front Med (Lausanne) ; 8: 788190, 2021.
Article in English | MEDLINE | ID: covidwho-1643503

ABSTRACT

Acute respiratory failure secondary to COVID-19 pneumonia may require a variety of non-pharmacological strategies in addition to oxygen therapy to avoid endotracheal intubation. The response to all these strategies, which include high nasal flow, continuous positive pressure, non-invasive ventilation, or even prone positioning in awake patients, can be highly variable depending on the predominant phenotypic involvement. Deciding when to replace conventional oxygen therapy with non-invasive respiratory support, which to choose, the role of combined methods, definitions, and attitudes toward treatment failure, and improved case improvement procedures are directly relevant clinical questions for the daily care of critically ill COVID-19 patients. The experience accumulated after more than a year of the pandemic should lead to developing recommendations that give answers to all these questions.

3.
Chest ; 160(1): 175-186, 2021 07.
Article in English | MEDLINE | ID: covidwho-1525725

ABSTRACT

BACKGROUND: SARS-CoV-2 aerosolization during noninvasive positive-pressure ventilation may endanger health care professionals. Various circuit setups have been described to reduce virus aerosolization. However, these setups may alter ventilator performance. RESEARCH QUESTION: What are the consequences of the various suggested circuit setups on ventilator efficacy during CPAP and noninvasive ventilation (NIV)? STUDY DESIGN AND METHODS: Eight circuit setups were evaluated on a bench test model that consisted of a three-dimensional printed head and an artificial lung. Setups included a dual-limb circuit with an oronasal mask, a dual-limb circuit with a helmet interface, a single-limb circuit with a passive exhalation valve, three single-limb circuits with custom-made additional leaks, and two single-limb circuits with active exhalation valves. All setups were evaluated during NIV and CPAP. The following variables were recorded: the inspiratory flow preceding triggering of the ventilator, the inspiratory effort required to trigger the ventilator, the triggering delay, the maximal inspiratory pressure delivered by the ventilator, the tidal volume generated to the artificial lung, the total work of breathing, and the pressure-time product needed to trigger the ventilator. RESULTS: With NIV, the type of circuit setup had a significant impact on inspiratory flow preceding triggering of the ventilator (P < .0001), the inspiratory effort required to trigger the ventilator (P < .0001), the triggering delay (P < .0001), the maximal inspiratory pressure (P < .0001), the tidal volume (P = .0008), the work of breathing (P < .0001), and the pressure-time product needed to trigger the ventilator (P < .0001). Similar differences and consequences were seen with CPAP as well as with the addition of bacterial filters. Best performance was achieved with a dual-limb circuit with an oronasal mask. Worst performance was achieved with a dual-limb circuit with a helmet interface. INTERPRETATION: Ventilator performance is significantly impacted by the circuit setup. A dual-limb circuit with oronasal mask should be used preferentially.


Subject(s)
COVID-19 , Continuous Positive Airway Pressure , Disease Transmission, Infectious/prevention & control , Noninvasive Ventilation , Air Filters , Benchmarking/methods , COVID-19/therapy , COVID-19/transmission , Continuous Positive Airway Pressure/adverse effects , Continuous Positive Airway Pressure/instrumentation , Continuous Positive Airway Pressure/methods , Critical Pathways/standards , Critical Pathways/trends , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/instrumentation , Noninvasive Ventilation/methods , Research Design , Respiratory Function Tests/methods , SARS-CoV-2 , Treatment Outcome , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL